Esophageal carcinoma (EsC) is a clinically challenging neoplastic disease. Genistein, a natural isoflavone product, has anti-tumor properties. Through in vitro and in vivo studies, we found that genistein suppressed EsC cell proliferation in a time- and concentration-dependent manner. In addition, genistein markedly promoted apoptosis and arrested cell cycle at the G0/G1 phase in a concentration-dependent manner. Furthermore, high concentrations of genistein have no adverse effect on normal esophageal epithelial cells. Mechanistically, genistein treatment strikingly reduced the expression of cell cycle-associated genes, and up-regulated the expression of cell apoptosis-related genes in EsC cells. Additionally, genistein dramatically decreased epidermal growth factor receptor (EGFR) expression and attenuated its down-stream signaling molecules STAT3, MDM2, Akt and JAK1/2 phosphorylation, resulting in inhibited nuclear translocation of STAT3 and MDM2, thereby inhibiting the JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways. In xenograft nude mice, genistein administration strikingly impaired tumor growth in a dose-dependent manner. Moreover, similar disturbances in molecular mechanisms were observed in vivo. Taken together, genistein suppressed the JAK1/2-STAT3 and AKT/MDM2/p53 signaling pathways by decreasing EGFR expression, leading to cell apoptosis, cell cycle arrest, and proliferation inhibition in EsC cells. Our findings suggest that genistein may be a promising alternative adjuvant therapy for patients with EsC.