Abstract

Acute kidney injury (AKI) is a common renal dysfunction. Renal ischemia-reperfusion (I/R) injury contributes to AKI progression. The microRNA miR-195-5p can act as a crucial tumor inhibitor in various cancers. However, the potential biological effects of miR-195-5p on AKI are not well-understood. We found that miR-195-5p levels were decreased in the serum samples of patients with AKI. Next, we determined miR-195-5p expression in the renal tissues of the rats and found that it was downregulated. Renal function was evaluated and confirmed using blood urea nitrogen and serum Cr levels. In parallel, the hypoxia-induced NRK-52E cell model was employed, and miR-195-5p was found to be markedly reduced under hypoxic conditions. Furthermore, miR-195-5p was modulated in NRK-52E cells. miR-195-5p induced NRK-52E cell proliferation and protected NRK-52E cells against hypoxia-triggered apoptosis. In an I/R mouse model, miR-195-5p alleviated renal injury triggered by I/R. In addition, oxidative stress and inflammatory factor concentrations were assessed using ELISA. The results showed that miR-195-5p mimicked attenuated oxidative stress induced by I/R injury and downregulated the protein expression of inflammatory factors. Moreover, we identified that vascular endothelial growth factor A (VEGFA) was a target gene of miR-195-5p, which could negatively regulate VEGFA expression in vitro. Inhibitors of miR-195-5p subsequently contributed to renal injury, which was reversed by VEGFA loss. In conclusion, miR-195-5p may repress AKI by targeting VEGFA.