Immune checkpoint inhibition has emerged as an effective treatment for multiple solid tumors, including advanced-stage breast cancer (BC). During the past decade, the US Food and Drug Administration has approved a number of agents for immune checkpoint blockade (ICB). However, the limited data on monotherapy anti-tumor activity in BC underscores the need for robust predictive biomarker development. Here, we used weighted gene coexpression network analysis of genes differentially expressed between BC and normal tissue to identify genes coexpressed with programmed death-1 (PD-1) and its ligand (PD-L1). Tumor Immune Estimation Resource and Gene Expression Profiling Interaction Analysis were used to assess the relationship between gene expression and the abundance of tumor-infiltrating lymphocytes (TILs). We found that chloride intracellular channel protein 2 (CLIC2) was not only coexpressed with PD-1 and PD-L1, but its increased expression was associated with a favorable prognosis and enrichment of multiple TIL types, particularly CD8+ T cells. These results suggest that CLIC2 is a potentially useful biomarker for identifying BC patients who could benefit from ICB.