Objective: This study aimed to the evaluate the nephrotoxicity of CdSe/ZnS QDs in vitro and vivo, as well as investigate the underlying toxicity mechanisms.

Results: In vitro experiments showed that compared with control cells, CdSe/ZnS QDs treatment significantly inhibited cell viability and promoted cell apoptosis in dose-dependent manner in NRK cells. Notably, CdSe/ZnS QDs treatment increased the contents of MDA and ROS, and decreased the activities of SOD, CAT and GSH-Px; however, the co-treatment of NAC and QDs relieved the oxidative damage of NRK cells. Moreover, in vivo experiments also revealed that CdSe/ZnS QDs treatment obviously increased kidney weight coefficient, damaged the kidney function, as well as induced inflammatory response and inhibited the activation of NRF2/Keap1 pathway in kidney tissues of mice.

Conclusions: CdSe/ZnS QDs exhibited obvious nephrotoxicity by mediating oxidative damage and inflammatory response in vitro and in vivo via NRF2/Keap1 pathway.

Methods: The characterization of CdSe/ZnS QDs was analyzed by transmission electron microscope, emission spectrum scanning, and dynamic light scattering. Rat kidney cells (NRK) were exposed to different doses of CdSe/ZnS QDs with or without N-acetylcysteine (NAC, antioxidant). Then, cellular uptake of CdSe/ZnS QDs was detected, and in vitro cytotoxicity was evaluated by MTT assay and TUNEL assay.