Tumor microenvironment is hypoxic, which can cause resistance to chemotherapy, but the detailed mechanisms remain elusive. Here we find that mild hypoxia (5% O2) further increases cisplatin resistance in the already resistant HepG2/DDP but not the sensitive HepG2 cells. We find that Nrf2 is responsible for cisplatin resistance under hypoxia, as Nrf2 knockdown sensitizes HepG2/DDP cells while Nrf2 hyper-activation (though KEAP1 knockdown) increases resistance of HepG2 cells to cisplatin. Nrf2 binds to an enhancer element in the upstream of HIF-1α gene independently of hypoxia, promoting HIF-1α mRNA synthesis under hypoxic condition. As a result, Nrf2-dependent transcription counteracts HIF-1α degradation under mild hypoxia condition, leading to preferential cisplatin-resistance in HepG2/DDP cells. Our data suggest that Nrf2 regulation of HIF-1α could be an important mechanism for chemotherapy resistance in vivo.