Long non-coding RNAs (lncRNAs) are reportedly involved in the regulation of physiological and pathophysiological processes. However, the potential role of lncRNAs in stroke remains largely undefined. Here, RNA-Seq analysis of lncRNAs found that the lncRNA PEG11as (PEG11as) levels were significantly increased in ischemic brain tissue in a transient middle cerebral artery occlusion/reperfusion (tMCAO/R) mouse model of stroke. To explore the role of PEG11as in stroke, the lentivirus containing PEG11as silencing construct(siRNA-PEG11as) was microinjected intracerebroventricularly into male or transfected to N2a cells and then exposed to tMCAO/R or oxygen-glucose deprivation/reoxygenation (OGD/R). Knockdown of PEG11as expression significantly reduced infarct volume, alleviated neuronal deficits and inhibited neuronal apoptosis in tMCAO/R mice. Mechanistically, as an endogenous microRNA-874-3p (miR-874-3p) sponge, PEG11as silencing inhibited miR-874-3p activity, resulting in downregulation of ATG16L1 expression and subsequent inhibition of neuronal apoptosis by regulating autophagy. Overall, the results of this current study indicate that PEG11as is involved in the pathophysiology of cerebral ischemia, thus providing translational evidence that PEG11as can be envisioned as a novel biomarker or/and therapeutic target for stroke.