Abstract

Background: Both genetic and environmental factors can influence idiopathic pulmonary fibrosis (IPF) and chronic obstructive pulmonary disease (COPD) development. The gut microbiota plays crucial roles in maintaining tissue homeostasis. Dysregulation of the gut microbiota can result in disease. However, whether the alteration of the gut microbiota influences IPF and COPD remains unknown.

Research Question: What is the causal relationship between IPF, COPD and the gut microbiota-related metabolic pathways? What are the potential intermediate mediators in this relationship?

Study Design and Methods: Intersect the gut microbiota and its metabolic pathways associated with IPF and COPD. Utilizing summary data from GWAS in public databases, a two-sample Mendelian randomization (MR) analysis was conducted on the gut microbiota-related metabolic pathway, the aspartate superpathway, in relation to IPF and COPD. Furthermore, we employed a two-step MR to quantify the proportion of influence mediated by monocytes and cDCs on the aspartate superpathway in relation to IPF and COPD.

Results: The MR analysis found that the aspartate superpathway decreased the risk of developing IPF and COPD. Monocytes and cDCs acted as intermediary substances, participating in this with influence proportions of 7.88% and 6.27%, respectively.

Interpretation: There is a causal link between the gut microbiota-related metabolic pathway, the aspartate superpathway, and IPF and COPD, where the influence is partially mediated by monocytes and cDCs. In clinical practice, we increase the focus on gut microbiota-mediated immune cells in relation to IPF and COPD.