Aging | Systemic Lipolysis Promotes Physiological Fitness in Drosophila Melanogaster

09-06-2022

A new research paper was published in Aging Volume 14, Issue 16, entitled, “Systemic lipolysis promotes physiological fitness in Drosophila melanogaster.”

Listen to an audio version of this press release

BUFFALO, NY- September 6, 2022 – A new research paper was published in Aging ("Aging (Albany NY)" by Medline/PubMed, "Aging-US" by Web of Science) Volume 14, Issue 16, entitled, “Systemic lipolysis promotes physiological fitness in Drosophila melanogaster.”

A large body of literature shows that lipid metabolism exerts profound regulatory effects on aging and affects stress responses. Interventions such as caloric restriction or fasting robustly promote lipid catabolism and improve aging-related phenotypical markers.

Researchers Linshan Shang, Elizabeth Aughey, Huiseon Kim, Timothy D. Heden, Lu Wang, Charles P. Najt, Nicholas Esch, Sophia Brunko, Juan E. Abrahante, Marissa Macchietto, Mara T. Mashek, Todd Fairbanks, Daniel E. L. Promislow, Thomas P. Neufeld, and Douglas G. Mashek from the University of Minnesota and University of Washington investigated the direct effect of increased lipid catabolism via overexpression of bmm (brummer, FBgn0036449), the major triglyceride hydrolase in Drosophila, on lifespan and physiological fitness. 

Comprehensive characterization was carried out using RNA-seq, lipidomics and metabolomics analysis. Global overexpression of bmm strongly promoted numerous markers of physiological fitness, including increased female fecundity, fertility maintenance, preserved locomotion activity, increased mitochondrial biogenesis and oxidative metabolism. Since bmm drives fatty acid oxidation, the data in this study implicated differential partitioning of glucose into the pentose phosphate pathway and purine biosynthesis between males and females. However, the underlying mechanisms through which bmm elicits these sex-specific effects remains to be determined.

“Increased bmm robustly upregulated the heat shock protein 70 (Hsp70) family of proteins, which equipped the flies with higher resistance to heat, cold, and ER [endoplasmic reticulum] stress via improved proteostasis.”

Despite improved physiological fitness, bmm overexpression did not extend lifespan. Taken together, these data show that bmm overexpression has broad beneficial effects on physiological fitness, but not lifespan.

“Collectively, these studies reveal diverse beneficial effects of global elevation of lipolysis on physiological fitness. This work provides additional rationale for pursuing therapeutic approaches, as done previously [39], that enhance lipolysis to mitigate metabolic and aging-related diseases.”

DOI: https://doi.org/10.18632/aging.204251

Corresponding Author: Douglas G. Mashek - Email: dmashek@umn.edu 

Keywords: brummer, lipolysis, physiological fitness, stress resistance, proteostasis

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204251

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.