Elimination of senescent cells (SnC) is anti-atherogenic, but the specific contribution of senescent vascular endothelial cells (EC) is unknown. We inactivated angiopoietin like-2 (angptl2), a marker of SnEC and a pro-atherogenic cytokine in LDLr-/-, hApoB100+/+ atherosclerotic (ATX) mice. Three months after a single vascular delivery of a small hairpin (sh)Angptl2 in 3-month old ATX mice using an adeno-associated virus serotype 1 (AAV1), aortic atheroma plaque progression was slowed by 58% (p<0.0001). In the native aortic endothelium, angptl2 expression was decreased by 80%, in association with a reduced expression of p21, a cyclin-dependent kinase inhibitor overexpressed in growth-arrested SnC. Endothelial activation was reduced (lower Icam-1, Il-1β and Mcp-1 expression), decreasing monocyte Cd68 expression in the endothelium. One week post-injection, the ratio Bax/Bcl2 increased in the endothelium only, suggesting that angptl2+/p21+ SnEC were eliminated by apoptosis. Four weeks post-injection, the endothelial progenitor marker Cd34 increased, suggesting endothelial repair. In arteries of atherosclerotic patients, we observed a strong correlation between p21 and ANGPTL2 (r=0.727, p=0.0002) confirming the clinical significance of angptl2-associated senescence. Our data suggest that therapeutic down-regulation of vascular angptl2 leads to the clearance of SnEC by apoptosis, stimulates endothelial repair and reduces atherosclerosis.