MicroRNAs (miRNAs) have emerged as critical regulators in the pathology of Alzheimer’s disease (AD). MiR-181a is associated with hippocampal memory formation and aberrantly expressed in patients with mild cognitive impairment (MCI), however, little is known about its role and underlying mechanism involved in AD. Here, we report that miR-181a expression declines in APP/PS1 mice, synchronous with the increase in amyloid β (Aβ) level, which suggests a reverse correlation between miR-181a level and AD development. Additionally, lentiviral overexpression of miR-181a via intrahippocampal injection ameliorates cognitive deficits and amyloid plaque deposition in APP/PS1 mice, indicating a beneficial role of miR-181a against AD progression. Moreover, miR-181a decelerates pericyte loss and blood-brain barrier breakdown in APP/PS1 mice. Furthermore, miR-181a protects against Aβ accumulation-induced pericyte apoptosis in vitro, which is attributed to the negative regulation of FOXO1 by miR-181a, since FOXO1 restoration abolishes miR-181a protective role against pericyte apoptosis. Altogether, these results may identify miR-181a as a novel regulator of AD pathology, and also implicate that the protection of miR-181a in blood-brain barrier pericytes may underlie its ameliorating effect on APP/PS1 mice.