Normal aging is known to be accompanied by decreased segregation across the whole-brain functional network, which is associated with cognitive decline. Although compelling evidence supports reduced segregation and increased integration in whole-brain functional connectivity with aging, the age effect on the reorganization of large-scale functional networks at the hemispheric level remains unclear. Here, we aimed to examine age-related differences in inter-hemispheric interactions and intra-hemispheric integration by using resting-state functional MRI data of a healthy adult lifespan sample. The results showed that age-related decreases in inter-hemispheric integration were found in entire functional networks in both hemispheres, except for the sensorimotor network (SMN) and posterior default mode network (DMN). Specifically, aging was accompanied by increasing inter-hemispheric segregation in the left frontoparietal network (FPN) and left ventral attention network (VAN), as well as right-brain networks located in the auditory network (AN), visual network (VN), and temporal parts of the DMN. Moreover, aging was associated with increasing intra-hemispheric integration within the bilateral VN and posterior DMN while decreasing intra-hemispheric integration within the right VAN. These remarkable changes with aging confirm that there are dynamic interactions between functional networks across the lifespan and provide a means of investigating the mechanisms of cognitive aging.