Research Paper Volume 11, Issue 22 pp 10499—10512
Melatonin modulates IL-1β-induced extracellular matrix remodeling in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration and inflammation
- 1 Department of Spinal Surgery, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
- 2 Department of Spine Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
Received: August 2, 2019 Accepted: November 6, 2019 Published: November 26, 2019
https://doi.org/10.18632/aging.102472How to Cite
Copyright © 2019 Zhang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Abstract
The inflammatory-associated factors interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) are widely reported to be associated with intervertebral disc (IVD) degeneration (IVDD). N-acetyl-5-methoxytryptamine (melatonin) is a natural hormone secreted by the pineal gland which has been shown to participate in several physiological and pathological progresses, such as aging, anti-inflammation, anti-apoptosis and autophagy regulation. However, the effects of melatonin on IVD remain unclear. In the present study, we treated human nucleus pulposus cells (NPCs) with melatonin and discovered that melatonin could modulate extracellular matrix (ECM) remodeling induced by IL-1β by enhancing collagen II and aggrecan expression levels and by downregulating matrix metalloproteinase-3 (MMP-3) levels. These findings were verified by western blot and immunofluorescence assays. Intraperitoneal injection of melatonin mitigated IVDD in the rat tail puncture model. X-ray and magnetic resonance imaging (MRI), as well as hematoxylin-eosin (H&E), Safranine O-Green, Alcian blue and Celium red staining methods were adopted to evaluate IVDD grades, the structural integrity of nucleus pulposus (NP) and annulus fibrosus (AF) and the damage and calcification of the cartilage endplate. Melatonin reduced inflammatory cell aggregation and the release of the inflammatory factors IL-1β, IL-6, TNF-α as determined by immunohistochemistry. In conclusion, the present study demonstrated that melatonin could modulate ECM remodeling by IL-1β in vitro and attenuate the IVDD and induction of inflammation in a rat tail puncture model in vivo. The data demonstrated that melatonin may contribute to the restoration processs of IVD following damage and may be used as a potential novel therapy for IVDD.