Background: Circular RNAs (circRNAs) are widely expressed non-coding RNAs in eukaryotic cells, involved in regulating tumorigenesis of several types of cancers. However, the expression profiles and the precise functional role in glioblastoma remain unclear.

Results: Circ-EPB41L5 was downregulated in glioblastoma tissues and cell lines compared to the normal brain tissues and cell lines. Low circ-EPB41L5 expression was correlated to the poor prognosis of glioblastoma patients, while the overexpression inhibited proliferation, clone formation, migration, and invasion abilities of glioma cells, and the suppression had counter effects. Furthermore, RNA-seq results determined that the host gene was the target gene of circ-EPB41L5, which served as a sponge against miR-19a and inhibited miR-19a activity from upregulating the expression of EPB41L5. Finally, we found that circ-EPB41L5 regulated the RhoC expression and phosphorylation of AKT through EPB41L5.

Conclusion: The current study highlights a novel suppressive function of circ-EPB41L5 and reveals that circ-EPB41L5/miR-19a/EPB41L5/p-AKT regulatory axis plays a striking role in the progression of glioblastoma, which provides a novel insight into the mechanisms underlying glioblastoma.

Methods: The expression profiles of circRNAs in glioblastoma were determined by Illumina HiSeq from six glioblastoma tissues and six normal brain tissues. Then, the correlation between circ-EPB41L5 expression and clinical features and the survival time of 45 glioblastoma patients was detected. The interaction between circ-EPB41L5, miR-19a, and EPB41L5 was assessed by luciferase reporter and RNA pull-down assays. The effects of expression of the ectopic intervention of circ-EPB41L5 or EPB41L5 on proliferation, clone formation, migration, and invasion in vitro and tumorigenesis in vivo were observed to evaluate the function of circ-EPB41L5 or EPB41L5.