Background: This study is conducted to investigate the protective role of elevated microRNA-375 (miR-375) in dopaminergic neurons in Parkinson’s disease through down-regulating transcription factor specificity protein 1 (SP1).

Results: The successfully modeled rats with Parkinson’s disease showed aggregated neurobehavioral change, increased neuroinflammatory response and oxidative stress, and lowered dopamine content. Parkinson’s disease rats treated with overexpressed miR-375 displayed improved neurobehavioral change, ameliorated neuroinflammatory response and oxidative stress, heightened dopamine content and abated neuronal apoptosis by down-regulating SP1. Up-regulation of SP1 reversed the protective effect of upregulated miR-375 on Parkinson’s disease.

Conclusion: Up-regulation of miR-375 ameliorated the damage of dopaminergic neurons, reduced oxidative stress and inflammation in Parkinson’s disease by inhibiting SP1.

Methods: Parkinson’s disease rat model was established by targeted injection of 6-hydroxydopamine to damage the substantia nigra striatum. The successfully modeled Parkinson’s disease rats were intracerebroventricularly injected with miR-375 mimics or pcDNA3.1-SP1. The functions of miR-375 and SP1 in neurobehavioral change, neuroinflammatory response, oxidative stress, dopamine content and expression of apoptosis-related proteins in the substantia nigra of Parkinson’s disease rats were evaluated. The target relation of miR-375 and SP1 was confirmed by bioinformatics analysis and dual luciferase reporter gene assay.