Caloric restriction (CR) or Dietary restriction (DR) is known to improve health and in many cases increases lifespan. However, its negative effect on reproduction has not been fully studied. Practicing CR/DR without adequate knowledge on its side effect may risk complications such as infertility, birth defect, or malnutrition. In this study, by using several CR strategies in C. elegans, we examine key functions of reproduction including embryonic development and larvae growth. We find that CR significantly decreases the survival of embryos and slows the growth of the offspring. We further determine that defect in oocyte but not sperm is responsible for the compromised reproduction under CR. Interestingly, adding methionine to the medium reverses the reproduction defects, but does not affect the long lifespan resulted from CR. The beneficial effect of methionine on reproduction requires the yolk protein vitellogenin. CR down-regulates vitellogenin expression, which can be reversed by supplementing methionine in the food. Lacking the yolk protein transport due to rme-2 mutation blocks methionine’s beneficial effects. Our study has revealed a novel, methionine-mediated genetic pathway linking nutrient sensing to reproduction and suggested methionine as a potential food supplement to mitigate the side effect of CR.