Exosomes are reported to mediate several disease-related microRNAs (miRNAs) to affect the progression of diseases, including atherosclerosis. Here, we aimed to screen the atherosclerosis-associated miRNAs and preliminarily investigate the potential regulatory mechanism of atherosclerosis. First, the lesion model for human umbilical vein endothelial cells (HUVECs) was favorably constructed. Later, through RNA-sequencing and bioinformatics analyses, miR-342-5p was identified in lesion model for HUVECs. MiR-342-5p overexpression or knockdown evidently promoted or inhibited the apoptosis of HUVECs impaired by H2O2. Mechanistically, PPP1R12B was found to have great potential as a target of miR-342-5p in HUVECs impaired by H2O2, supported by RNA-sequencing and a series of bioinformatics analyses. Meanwhile, the effect of miR-342-5p on PPP1R12B expression in HUVECs’ lesion model was explored, revealing that miR-342-5p had an inhibitory role in PPP1R12B expression. Additionally, adipose-derived mesenchymal stem cells (ADSCs) in spindle-like shape and their derived exosomes with 30 to 150 nm diameter were characterized. Furthermore, results showed miR-342-5p was evidently decreased in the presence of ADSCs-derived exosomes. These findings indicated ADSCs-derived exosomes restrained the expression of miR-324-5p in lesion model. Collectively, this work demonstrates an atherosclerosis-associated miR-342-5p and reveals a preliminary possible mechanism in which miR-342-5p mediated by ADSCs-derived exosomes protects endothelial cells against atherosclerosis.