Aging induces gradual accumulation of damages in cells and tissues, which leads to physiological dysfunctions. Aging-associated muscle dysfunction is commonly seen in aged population and severely affects their physical activity and life quality, against which aerobic training has been shown to exert antagonizing or alleviating effects. Circular RNAs (circRNAs) play important roles in various physiological processes, yet their involvement in aging-associated muscle dysfunction is not well understood. In this study, we performed comprehensive analysis of circRNAs profiles in quadriceps muscles in sedentary young and aging mice, as well as aging mice with aerobic exercise using RNA sequencing. Our results identified circRNAs altered by factors of aging and aerobic exercise. Their host genes were then predicted and analyzed by gene ontology enrichment analysis. Importantly, we found that circBBS9 featured decreased levels in aging compared to young mice and elevated expression in exercise versus sedentary aging mice. Besides, we performed GO and KEGG analysis on circBBS9 target genes, as well as established the circBBS9-miRNA-mRNAs interaction network. Our results indicate that circBBS9 may play active roles in muscle aging by mediating the benefits of aerobic training intervention, thus may serve as a novel therapeutic target combating aging-associated muscle dysfunction.