The nuclear factor (NF)-κB and NOD-like receptor protein 3 (NLRP3) pathways promote inflammatory signaling that injures the kidneys, whereas the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway promotes anti-inflammatory signaling that inhibits oxidative damage. Penehyclidine hydrochloride (PHC) inhibits NF-κB and activates Nrf2 signaling. We investigated whether PHC induces communication between the Nrf2 and NF-κB/NLRP3 pathways, thereby protecting against renal ischemia/reperfusion (rI/R)-induced lung inflammation. Rat alveolar macrophages (NR8383 cells) were stimulated for 24 h with PHC with or without brusatol (a Nrf2 antagonist), after which they were treated for 4 h with tert-butyl hydroperoxide (10 mM). PHC Nrf2-dependently alleviated tert-butyl hydroperoxide-induced reactive oxygen species production in alveolar macrophages. Additionally, wild-type and Nrf2−/− rats were each divided into four groups: (1) sham, (2) PHC (1 mg/kg), (3) rI/R and (4) rI/R + PHC (1 mg/kg). PHC markedly induced the Nrf2 and adenosine monophosphate-activated protein kinase pathways and suppressed rI/R-induced NF-κB and NLRP3 activation in the lungs. Nrf2 deficiency diminished the ability of PHC to ameliorate rI/R-induced histopathological alterations and reactive oxygen species release in the lungs; however, PHC inhibited NLRP3 signaling Nrf2-dependently, while it inhibited NF-κB signaling Nrf2-independently. Our findings demonstrate the beneficial effects of PHC on rI/R-induced lung inflammation.