Targeting autophagy holds promise to enhance chemosensitivity in acute myeloid leukemia (AML). MicroRNA-143 (miR-143) has been found to suppress autophagy, however, it is not clear whether miR-143 augments cytarabine cytotoxicity in AML. Here, we report that cytarabine treatment reduces miR-143 expression in AML cell lines and primary AML cells. Moreover, ectopic expression of miR-143 further decreases cell viability in cytarabine-treated AML cells. By contrast, miR-143 knockdown inhibits cytarabine-induced cytotoxicity, together indicating a role of miR-143 in enhancing cytarabine sensitivity in AML. Subsequently, we show that miR-143 inhibits autophagy in cytarabine-treated AML cells by directly targeting autophagy-related proteins (ATG), ATG7 and ATG2B, two critical known components of autophagic machinery. More importantly, autophagy reconstructed via co-expression of ATG7 and ATG2B substantially attenuates miR-143-enhanced cytotoxicity, which is associated with suppression of caspase-dependent apoptotic pathway. Overall, this study demonstrates that targeting ATG7 and ATG2B-dependent autophagy is a critical mechanism by which miR-143 sensitizes AML to cytarabine, implicating it as a potential therapeutic target in AML treatment.