Abstract

This investigation addressed the impact of integrin-initiated signaling pathways on senescence of tumor cells. In a model of human SK-Mel-147 melanoma cells, the silencing of integrin α2β1 strongly reduced cell proliferation and enhanced the percentage of SA-β-Gal-positive cells, a phenotypic feature of cellular senescence. These changes were accompanied by a significant increase in the activity of Akt and mTOR protein kinases and also in the expression of p53 and p21 oncosuppressors. Pharmacological inhibition of Akt and mTORC1 and genetic inhibition of p53 and p21 reduced the senescence of α2β1-depleted SK-Mel-147 cells to the level of control cells. Based on our earlier data on the non-canonical functions of Akt isomers in the invasion and anoikis of SK-Mel-147 cells, we investigated the role of Akt isomers in senescence induced by α2β1 suppression. The inhibition of Akt1 strongly reduced the percentage of SA-β-Gal-positive cells in the α2β1-depleted cell population, while the inhibition of Akt2 did not have a noticeable effect. Our data demonstrated for the first time that α2β1 is involved in the protection of tumor cells against senescence and that senescence, which is induced by the downregulation of α2β, is based on a signaling mechanism in which Akt1 performs a non-canonical function.