Abstract

To explore the inhibitory effect of long non-coding RNA (LncRNA) antisense of KTN1 (KTN1-AS1) on the growth of pancreatic cancer (PC) cells by regulating the microRNA-23b-3p (miR-23b-3p)/high-mobility group box 2 (HMGB2) axis. The expression of KTN1-AS1 in tissues and cells was detected by qRT-PCR, and the relationship between KTN1-AS1 and clinicopathological data of patients with PC was analyzed. In addition, stable and transient overexpression and inhibition vectors were established and transfected into PC cells PANC-1, BxPC-3. CCK-8, transwell, and flow cytometry were responsible for the detection of proliferation, invasion, and apoptosis of transfected cells, respectively. The correlation of miR-23b-3p between KTN1-AS1 and HMGB2 was determined by dual luciferase reports, and the relationship between KTN1-AS1 and miR-23b-3p was further verified by RNA immunoprecipitation (RIP). The highly expressed KTN1-AS1 in PC patients was indicative of its high diagnostic value in this disease. Besides, it was found that KTN1-AS1 was linked with the pathological stage, differentiation degree and lymph node metastasis (LNM) of PC patients. Underexpressed KTN1-AS1 led to decreased proliferation and invasion ability of cells and increased apoptosis rate, while the effect of further overexpression of KTN1-AS1 on cells was the opposite. Dual luciferase reporter (DLR) assay confirmed that KTN1-AS1 could target miR-23b-3p, while miR-23b-3p could target HMGB2. Functional analysis showed that the overexpression of miR-23b-3p inhibited the expression of HMGB2 in PC cells and affected cell proliferation, invasion and apoptosis. Co-transfection of Sh-KTN1-AS1 and miR-23b-3p-mimics exhibited that up-regulation of KTN1-AS1 expression could reverse the effect of miR-23b-3p-mimics on PC cells.