Primary angle-closure glaucoma (PACG) is an ophthalmic genetic disease characterized by direct contact between the iris and trabecular meshwork, resulting in an obstructed outflow of aqueous humor from the eye. However, it is unclear as to what role genetics plays in the development of PACG. The present study investigated the disease-causing mutation in a five-generation Chinese PACG family using whole-genome sequencing. A novel heterozygous missense mutation c.977C>T in PCK2 gene was identified in five affected family members, but not in any unaffected and 86 unrelated healthy individuals. This nucleotide substitute is predicted to result in a proline to leucine substitution p.Pro326Leu. Furthermore, the function of this mutation was analyzed through various in vitro assays using the RGC-5 cell line. Our results demonstrate that the p.Pro326Leu mutation induces RGC-5 cell cycle arrest and apoptosis with a decreased BcL-XL. The increasing P53, P27, P21, AKT, and P-GSK3α were also detected in the cells transfected with c.977C>T mutation, suggesting that this mutation within PCK2 gene cause PACG through impairment of AKT/GSK3α signaling pathway.