Abstract

Wrinkling is prominent manifestation of aging skin. A mutant phenotype characterized by systemic wrinkles and thickened skin was discovered in Xiang pig populations with incidence about 1-3%. The feature in histological structure was epidermal hyperplasia and thickening, collagen fibers disorder. To uncover genetic mechanisms for the mutant phenotype of Xiang pigs with systemic wrinkle (WXP), a genome-wide of structural variations (SVs) in WXP was described by next generation resequencing, taking Xiang pigs (XP) and European pigs (EUP) as compares. Total of 32,308 SVs were detected from three pig groups and 965 SVs were identified specifically from WXP, involving 481 protein-coding genes. These genes were mainly enriched in nuclear structure, ECM components and immunomodulatory pathways. According to gene function and enrichment analysis, we found that 65 candidate SVs in 59 protein genes were probably related with the systemic wrinkle of WXP. Of these, several genes are reported to be associate with aging, such as EIF4G2, NOLC1, XYLT1, FUT8, MDM2 and so on. The insertion/deletion and duplication variations of SVs in these genes resulted in the loss of stop-codon or frameshift mutation, and aberrant alternative splicing of transcripts. These genes are involved in cell lamin filament, intermediate filament cytoskeleton, supramolecular complex, cell differentiation and regulation of macromolecule metabolic process etc. Our study suggested that the loss of function or aberrant expression of these genes lead to structural disorder of nuclear and the extracellular matrix (ECM) in skin cells, which probably was the genetic mechanisms for the mutant phenotype of systemic skin wrinkle of Xiang pig.