Abstract

Triple-negative breast cancer (TNBC) patients are at high risk of recurrence and metastasis in the early stages, although receiving standard treatment. However, the underlying mechanism of TNBC remains unclear. Here, the critical effect of E3 ubiquitin ligase RBX1 in the metastasis of TNBC was reported for the first time. We discovered that RBX1 expression was evidently raised in the tissues of TNBC. Our clinical research displayed that high RBX1 expression was markedly related to poor distant invasion and survival. Functional analysis exhibited that RBX1 facilitated metastasis of TNBC cells through increasing EMT. Furthermore, we demonstrated that RBX1 knockdown increased the levels of the Twist family bHLH transcription factor 1 (TWIST1), is a significant regulator in the EMT process in some cancers. It can be observed an evident positive correlation between the TWIST1 and RBX1 levels, further confirming that EMT induced by RBX1 in TNBC cells is determined by TWIST1. Mechanistically, RBX1 modulates the expression of TWIST1 via modulating FBXO45, directly binding to FBXO45, and facilitating its degradation and ubiquitination. Briefly, our findings confirm that RBX1 is probably a new biomarker of TNBC carcinogenesis, thus suggesting that targeting the RBX1/FBXO45/TWIST1 axis may be an underlying strategy for TNBC treatment.