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INTRODUCTION 
 

We live in an aging society. According to the U.S. 

Census Bureau’s 2017 National Population Projections, 

1 in every 5 residents will be in retirement age by 2030 

[1]. Subsequently, a more significant percentage of the 

population will endure the challenges of age-related 

diseases than ever before. Treatments targeting these 

diseases, such as dementia or cancer, at most “delay” 

the disease process but have a limited ability to “cure.” 

Therefore, there are growing interests in treating aging 

itself as a disease [2]. 
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ABSTRACT 
 

Background: Metformin, a commonly prescribed anti-diabetic medication, has repeatedly been shown to 
hinder aging in pre-clinical models and to be associated with lower mortality for humans. It is, however, not 
well understood how metformin can potentially prolong lifespan from a biological standpoint. We 
hypothesized that metformin’s potential mechanism of action for longevity is through its epigenetic 
modifications. 
Methods: To test our hypothesis, we conducted a post-hoc analysis of available genome-wide DNA methylation 
(DNAm) data obtained from whole blood collected from inpatients with and without a history of metformin 
use. We assessed the methylation profile of 171 patients (first run) and only among 63 diabetic patients 
(second run) and compared the DNAm rates between metformin users and nonusers. 
Results: Enrichment analysis from the Kyoto Encyclopedia of Genes and Genome (KEGG) showed pathways 
relevant to metformin’s mechanism of action, such as longevity, AMPK, and inflammatory pathways. We also 
identified several pathways related to delirium whose risk factor is aging. Moreover, top hits from the Gene 
Ontology (GO) included HIF-1α pathways. However, no individual CpG site showed genome-wide statistical 
significance (p < 5E-08). 
Conclusion: This study may elucidate metformin’s potential role in longevity through epigenetic modifications 
and other possible mechanisms of action. 
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Considerable evidence from basic and pre-clinical 

models shows that several interventions, such as 

exercise, intermittent fasting, and even ingestion of 

certain compounds can prolong lifespan. These 

promising compounds include rapamycin [3, 4], 

resveratrol [5–7], NAD [8], and metformin [9–11]. Our 

group also confirmed that inpatients using metformin 

had improved three-year survival rates compared to 

non-metformin users [12]. In addition, our data also 

showed that prevalence of delirium was lower among 

those who were on metformin compared to those 

without [12]. 

 

The mechanism (or mechanisms) of action that 

rationalizes how these interventions prolong lifespan, 

or potentially delay aging, has been investigated 

heavily. Nevertheless, no exact process is well 

understood, especially for metformin. It is believed that 

epigenetics is one of the most important molecular 

mechanisms of aging in animals and plants; thus, it is 

plausible that the “life-prolonging” effects of many 

interventions are through modification of epigenetic 

processes. For example, several reports show 

epigenetic changes from exercise [13], fasting [14], 

rapamycin [3], resveratrol [5], and NAD [8]. However, 

there are only a few studies investigating the direct 

influence of metformin on epigenetic changes [15–17], 

suggesting that information about the influence of 

metformin on the epigenetic profile in humans is 

currently limited. 

 

To fill such gap of knowledge, we investigated the 

potential influence of metformin on the epigenetic 

profile by testing genome-wide DNA methylation 

(DNAm) in whole blood samples obtained from 

inpatients with and without a history of metformin use. 

 

RESULTS 
 

Demographics 

 

173 subjects were enrolled in this study, but only 171 

were included in downstream data analysis. The average 

patient age was 74.4 (SD = 9.8). 58 (33.9%) subjects 

were females while almost all the subjects were white 

per self-report (n = 167; 97.7%). 108 patients were non-

diabetic (non-DM) while 63 were diabetic (DM). 

Among the DM group, 37 had diabetes with a history of 

metformin prescription DM(+)Met and 26 had diabetes 

without a history of metformin prescription DM(−)Met. 

Additionally, 43 (68.3%) diabetic subjects had a history 

of insulin use. Charlson Comorbidity Index (CCI) and 

body mass index (BMI) information are also included in 

Table 1. No variable revealed statistically significant 

differences between the DM(−)Met and DM(+)Met. 

However CCI, BMI, and insulin use were significantly 

higher among the DM group compared to the non-DM 

group, as expected. 

 

Met vs. non-Met (including all patients regardless of 

diabetes status): top hits, KEGG, GO 

 

Table 2 shows the most significant genes that differed 

in methylation rates between patients with and without 

metformin use history regardless of diabetes status (171 

subjects). None of the sites met the criteria for genome-

wide statistical significance (p < 5E-8). 

 

Next, we conducted enrichment analysis using the top 

330 CpG sites based on the absolute difference in 

methylation level (beta value) between metformin users 

(Met) and nonusers (non-Met) greater than 4% and the 

p-value less than 0.01. Enrichment analysis from the 

KEGG top signals showed relevant pathways to 

metformin’s possible roles, such as “longevity 

regulating pathway”, “longevity regulating pathway – 

multiple species”, and “AMPK signaling pathway” 

(Table 3). In addition, other pathways, such as “mTOR 

signaling pathway”, “insulin secretion”, “glutamatergic 

synapse”, and “circadian entrainment” were discovered 

(Table 3). There were also relevant pathways revealed 

in the GO analysis, such as “regulation of hypoxia-

inducible factor-1alpha signaling pathway”, “positive 

regulation of hypoxia-inducible factor-1alpha signaling 

pathway”, and “canonical Wnt signal pathway” 

(Table 4), although none of the pathways in either 

KEGG or GO reached the False Discovery Rate (FDR) 

significance level (FDR <0.05) (Tables 3 and 4). 

 

Met vs. non-Met (including only patients with type 2 

diabetes mellitus): top hits, KEGG, GO 

 

Table 5 shows the most significant genes that differed 

in methylation rate between metformin users and 

nonusers among the diabetes group (63 subjects). 

Similar to the previous analysis, no gene reached 

genome-wide statistical significance (p < 5E-8). 

 

The enrichment analysis was generated using consistent 

parameters in methylation level differences (beta >4%) 

and p-value (<0.01). This current analysis, however, 

included 1283 CpGs. KEGG showed many of the same 

signals discovered from the previous analysis, including 

“longevity regulating pathway”, “glutamatergic 

synapse”, “insulin secretion”, “circadian entrainment”, 

and “cholinergic synapse” (Table 6). GO also showed 

overlapping pathways compared to the first analysis, 

including “hypoxia-inducible factor-1alpha signaling 

pathway”, but also new pathways, such as “interleukin-
8-mediated signaling pathway”, “negative regulation of 

leukocyte apoptotic process”, “neutrophil homeostasis”, 

and “neuron projection”, although these pathways did 
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Table 1. Patient characteristics. 

Classification 
All 

Subjects 

Diabetes 
p 

Statistical 

test 

DM subjects 
p 

Statistical 

test non-DM DM DM(−)Met DM(+)Met 

N 171 108 63   26 37   

Age - yr 74.4 74.6 74.1 0.77 t = 1.98 73.8 74.3 0.833 t = 2.01 

SD 9.8 9.7 10.0   10.6 9.7   

Female sex (n) 58 36 22 0.81 χ2 = 0.10 11 11 0.303 χ2 = 1.06 

% 33.9 33.6 34.9   42.3 29.7   

Race, White (n) 167 105 62 0.63 χ2 = 0.23 25 37 0.229 χ2 = 1.45 

% 97.7 97.2 98.4   96.2 100   

CCI 3.8 3.1 4.9 7.5E-06* t = 1.98 4.8 5.0 0.756 t = 2.00 

SD 2.7 2.7 2.4   2.4 2.5   

BMI 29.7 28.3 32.2 0.002* t = 1.98 30.0 33.8 0.64 t = 2.00 

SD 7.6 6.3 8.8   5.0 10.5   

Insulin use history 43 0 43 3.3E-23* χ2 = 98.48 15 28 0.131 χ2 = 2.28 

% 25.1 0 68.3   57.7 75.7   

Age, sex, and race were not significantly different between the non-diabetes (non-DM) and the diabetes (DM) groups, while 
CCI, BMI, and insulin use were. None of the patient characteristics between metformin nonusers DM(−)Met and metformin 
users DM(+)Met among the diabetic group were statistically significant. Abbreviations: SD: Standard deviation; CCI: Charlson 
comorbidity index; BMI: Body mass index. *p < 0.05. 

 

 

Table 2. Top 20 CpG sites that differed between metformin users and nonusers among all patients. 

Gene name CpG site Chromosome non-Met (%) Met (%) % mean difference (Δβ) p-value 

PSME3 cg22769787 chr17 15.6% 14.3% 1.3% 3.37E-07 

EPHA8 cg27136384 chr1 83.2% −2.7% −2.7% 4.84E-07 

 cg22163972 chr17 92.1% 4.2% 4.2% 4.89E-07 

 cg23047680 chr3 0.8% −0.2% −0.2% 9.08E-07 

NEDD4 cg11341892 chr15 4.7% 0.6% 0.6% 2.82E-06 

PRKCG cg11293016 chr19 52.9% 4.0% 4.0% 4.68E-06 

SRSF11 cg12923877 chr1 97.5% −0.3% −0.3% 4.94E-06 

RRP15 cg24353272 chr1 95.3% −0.8% −0.8% 5.16E-06 

KIAA1688 cg07969649 chr8 91.1% −1.6% −1.6% 5.22E-06 

TRIM27 cg02525926 chr6 97.4% 0.8% 0.8% 6.98E-06 

 cg23067796 chr12 93.7% 1.7% 1.7% 7.29E-06 

RYR2 cg04573831 chr1 96.6% −0.6% −0.6% 8.11E-06 

 cg15180899 chr18 93.9% 1.7% 1.7% 8.67E-06 

 cg12222244 chr3 94.1% 2.1% 2.1% 1.27E-05 

C1orf125 cg20746459 chr1 90.6% 3.5% 3.5% 1.52E-05 

SERPINH1 cg19586851 chr11 97.2% −0.5% −0.5% 1.55E-05 

PPL cg12991522 chr16 1.8% −0.5% −0.5% 1.55E-05 

ACO1 cg13567378 chr9 89.0% −1.3% −1.3% 1.71E-05 

 cg24525630 chr17 1.6% −0.3% −0.3% 1.72E-05 

TCF7L1 cg20116596 chr2 95.7% −0.5% −0.5% 1.76E-05 
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Table 3. Top 30 KEGG pathways based on different methylation rates between metformin users and nonusers. 

Pathway N DE p-value FDR 

Relaxin signaling pathway 129 6 0.007 1 

Longevity regulating pathway 89 5 0.008 1 

Glutamatergic synapse 114 6 0.008 1 

Cushing syndrome 155 6 0.018 1 

Parathyroid hormone synthesis, secretion and action 106 5 0.019 1 

AMPK signaling pathway 119 5 0.021 1 

Signaling pathways regulating pluripotency of stem cells 142 5 0.028 1 

Gap junction 88 4 0.033 1 

Insulin secretion 86 4 0.034 1 

Melanogenesis 101 4 0.043 1 

Longevity regulating pathway - multiple species 62 3 0.051 1 

Aldosterone synthesis and secretion 98 4 0.055 1 

Chemical carcinogenesis - DNA adducts 69 2 0.056 1 

Circadian entrainment 97 4 0.058 1 

Steroid hormone biosynthesis 61 2 0.062 1 

Thermogenesis 219 5 0.063 1 

Bile secretion 89 3 0.063 1 

Metabolism of xenobiotics by cytochrome P450 76 2 0.068 1 

Cortisol synthesis and secretion 65 3 0.069 1 

Thyroid hormone synthesis 75 3 0.071 1 

Wnt signaling pathway 166 5 0.071 1 

Vasopressin-regulated water reabsorption 44 2 0.081 1 

Cholinergic synapse 113 4 0.090 1 

Retrograde endocannabinoid signaling 141 4 0.089 1 

Estrogen signaling pathway 137 4 0.091 1 

Mineral absorption 60 2 0.111 1 

Gastric cancer 149 4 0.121 1 

mTOR signaling pathway 155 4 0.123 1 

Protein digestion and absorption 102 3 0.123 1 

Ovarian steroidogenesis 51 2 0.123 1 

Thyroid hormone synthesis 75 3 0.071 1 

Relevant pathways from KEGG [58] are highlighted. Abbreviations: N: number of genes included in each pathway; DE: 
number of Differentially Expressed genes, which are the number of genes from the top CpG sites; FDR: False Discovery 
Rate. 

 

 
Table 4. Top 30 GO pathways based on different methylation rates between metformin users and nonusers. 

Pathway Ont N DE p-value FDR 

Homophilic cell adhesion via plasma membrane adhesion molecules BP 168 8 7.20E-04 1 

Long-term synaptic depression BP 31 4 9.77E-04 1 

Locomotory behavior BP 198 9 0.001 1 

Midbrain dopaminergic neuron differentiation BP 17 3 0.002 1 

Cell surface receptor signaling pathway involved in cell-cell signaling BP 622 17 0.002 1 

Negative regulation of synaptic transmission BP 71 5 0.002 1 

Canonical Wnt signaling pathway BP 335 11 0.002 1 
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Calcium ion binding MF 698 17 0.003 1 

Hexose mediated signaling BP 6 2 0.003 1 

Sugar mediated signaling pathway BP 6 2 0.003 1 

Glucose mediated signaling pathway BP 6 2 0.003 1 

Cellular response to acid chemical BP 209 8 0.003 1 

Cell-cell signaling BP 1847 345 0.003 1 

Regulation of ion transmembrane transporter activity BP 256 9 0.004 1 

Mesoderm development BP 133 6 0.004 1 

Neuronal cell body membrane CC 27 3 0.004 1 

Cell body membrane CC 28 3 0.004 1 

Regulation of transmembrane transporter activity BP 264 9 0.005 1 

Regulation of hypoxia-inducible factor-1alpha signaling pathway BP 1 1 0.005 1 

Positive regulation of hypoxia-inducible factor-1alpha signaling pathway BP 1 1 0.005 1 

Cellular response to vitamin K BP 1 1 0.005 1 

Cellular response to glucagon stimulus BP 25 3 0.005 1 

Carbohydrate mediated signaling BP 8 2 0.005 1 

Seminal vesicle morphogenesis BP 1 1 0.005 1 

Glucagon-like peptide 1 receptor activity MF 1 1 0.005 1 

Behavior BP 593 15 0.005 1 

Nicotinamide phosphoribosyltransferase activity MF 1 1 0.006 1 

Response to D-galactose BP 1 1 0.006 1 

Embryonic skeletal system development BP 125 6 0.006 1 

Regulation of transporter activity BP 279 9 0.006 1 

Relevant pathways are highlighted. Abbreviations: Ont: Ontology; BP: biological process; CC: cellular component; MF: 
molecular function; N: number of genes included in each pathway; DE: number of Differentially Expressed genes, which are 
the number of genes from the top CpG sites; FDR: False Discovery Rate. 

 

 
Table 5. Top 20 CpG sites that differed between metformin users and nonusers among the diabetes group. 

Gene name CpG site Chromosome non-Met (%) Met (%) Mean difference (Δβ) p-value 

 cg19873536 chr10 78.3% 67.9% 10.4% 1.28E-06 
 cg13596208 chr9 1.9% 2.7% −0.9% 2.29E-06 

HBA1 cg01704105 chr16 40.5% 33.7% 6.8% 5.42E-06 

DUOX2 cg02550961 chr15 1.5% 1.9% −0.4% 6.10E-06 

NEO1 cg12516231 chr15 2.2% 3.2% −0.9% 6.97E-06 

C7orf46 cg06685724 chr7 2.1% 2.9% −0.8% 1.28E-05 

NAT15 cg00484396 chr16 9.8% 4.9% 4.8% 1.56E-05 
 cg14685975 chr5 89.9% 92.1% −2.2% 1.64E-05 

CTSL cg02104500 chr9 3.6% 4.9% −1.4% 1.66E-05 
 cg12584257 chr9 67.6% 77.2% −9.6% 1.69E-05 

NAT15 cg22508957 chr16 10.9% 6.3% 4.6% 1.84E-05 

AREL1 cg11034672 chr14 11.6% 15.0% −3.3% 1.86E-05 
 cg24651265 chr10 1.1% 1.7% −0.5% 2.12E-05 

CMBL cg17467873 chr5 1.7% 2.1% −0.4% 2.21E-05 

EBF4 cg05857996 chr20 77.6% 63.6% 13.9% 2.23E-05 
 cg18482666 chr2 95.8% 94.8% 1.0% 2.39E-05 

HRASLS5 cg00489394 chr11 6.6% 7.1% −0.5% 2.40E-05 

AKAP13 cg21530087 chr15 2.2% 2.6% −0.4% 2.59E-05 
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 cg15864571 chr3 93.4% 95.0% −1.6% 2.67E-05 

FLJ35024 cg15981195 chr9 2.3% 3.5% −1.1% 2.91E-05 

 

 

Table 6. Top 30 KEGG pathways that differed between metformin users and nonusers among the diabetes group. 

Pathway N DE p-value FDR 

Aldosterone synthesis and secretion 98 14 0.001 0.219 

Circadian entrainment 97 14 0.001 0.219 

Cortisol synthesis and secretion 65 10 0.003 0.303 

Thyroid hormone synthesis 75 10 0.004 0.303 

Regulation of lipolysis in adipocytes 55 8 0.006 0.330 

Parathyroid hormone synthesis, secretion and action 106 13 0.006 0.330 

Insulin secretion 86 11 0.007 0.330 

Calcium signaling pathway 238 21.5 0.009 0.388 

cAMP signaling pathway 221 19 0.010 0.388 

Cholinergic synapse 113 13 0.012 0.420 

Chemical carcinogenesis - receptor activation 212 16 0.015 0.435 

Glutamatergic synapse 114 13 0.016 0.435 

Rap1 signaling pathway 210 19 0.016 0.435 

Thermogenesis 219 15 0.020 0.468 

Amphetamine addiction 69 8 0.021 0.468 

Neuroactive ligand-receptor interaction 349 19.5 0.022 0.468 

Pancreatic secretion 101 9 0.029 0.552 

Long-term potentiation 67 8 0.029 0.552 

Cocaine addiction 49 6 0.036 0.552 

Phospholipase D signaling pathway 147 14.5 0.038 0.552 

cGMP-PKG signaling pathway 166 14.5 0.039 0.555 

Apelin signaling pathway 139 12 0.040 0.555 

Nicotine addiction 40 5 0.040 0.555 

EGFR tyrosine kinase inhibitor resistance 78 9 0.041 0.555 

Inflammatory mediator regulation of TRP channels 98 10 0.042 0.555 

Gap junction 88 9 0.042 0.555 

Type II diabetes mellitus 46 6 0.043 0.558 

Longevity regulating pathway 89 9 0.045 0.561 

Salivary secretion 92 8 0.048 0.578 

Bladder cancer 41 5 0.054 0.610 

Relevant pathways from KEGG [58] are highlighted. Abbreviations: N: number of genes included in each pathway; DE: number 
of Differentially Expressed genes, which are the number of genes from the top CpG sites; FDR: False Discovery Rate. 

 

not reach the FDR significance level (FDR <0.05) 

(Table 7). 

 

DNA methylation age acceleration 

 

Among the diabetes group, metformin nonusers had a 

mean age acceleration of −8.07 compared to a mean age 

acceleration of −4.47 for metformin users (p = 0.11) 

(Figure 1). This difference was smaller among all the 

subjects included regardless of diabetes status (−5.92 

for metformin nonusers vs. −4.47 for metformin users; 

p = 0.34) (Figure 2). Both analyses did not reach 

statistical significance. 
 

DISCUSSION 
 

In this study, we compared genome-wide DNA 

methylation rates among metformin users and nonusers 

to investigate the potential epigenetic effects of 

metformin exposure. Enrichment analysis was 

employed to elucidate the possible mechanisms of 

action induced by metformin. Our KEGG analysis 
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Table 7. Top 30 GO pathways that differed between metformin users and nonusers among the diabetes group. 

Pathway Ont N DE p-value FDR 

Neuron projection CC 1304 97.1 1.29E-05 0.286 

Second-messenger-mediated signaling BP 438 38.5 2.53E-05 0.286 

Neutrophil homeostasis BP 16 6 3.77E-05 0.286 

Synaptic signaling BP 725 59.5 9.26E-05 0.505 

Trans-synaptic signaling BP 708 57.5 1.67E-04 0.505 

Negative regulation of leukocyte apoptotic process BP 46 8 1.93E-04 0.505 

Calcium-mediated signaling BP 218 22.5 1.94E-04 0.505 

Chemical synaptic transmission BP 700 56.5 2.00E-04 0.505 

Anterograde trans-synaptic signaling BP 700 56.5 2.00E-04 0.505 

Positive regulation of cell-matrix adhesion BP 51 10 3.21E-04 0.682 

Positive regulation of multicellular organismal process BP 1802 106 3.39E-04 0.682 

Plasma membrane bounded cell projection CC 2093 130.1 4.05E-04 0.682 

Interleukin-8 receptor activity MF 2 2 4.44E-04 0.682 

Interleukin-8-mediated signaling pathway BP 2 2 4.44E-04 0.682 

Adult behavior BP 144 17.5 4.73E-04 0.682 

Cell junction CC 1858 123.8 5.16E-04 0.682 

Synapse CC 1168 85.5 5.27E-04 0.682 

NMDA glutamate receptor activity MF 7 4 6.05E-04 0.682 

Hypoxia-inducible factor-1alpha signaling pathway BP 6 3 6.39E-04 0.682 

Regulation of dendrite development BP 148 19 6.44E-04 0.682 

Axon CC 606 50.6 6.46E-04 0.682 

Low voltage-gated calcium channel activity MF 3 3 7.18E-04 0.682 

Dendrite development BP 232 26.5 7.28E-04 0.682 

Vestibulocochlear nerve development BP 10 4 7.64E-04 0.682 

Ionotropic glutamate receptor signaling pathway BP 25 7 7.69E-04 0.682 

Neuron projection development BP 976 74 8.82E-04 0.682 

Cellular response to glucose stimulus BP 132 15 9.26E-04 0.682 

Locomotory behavior BP 198 21.5 9.36E-04 0.682 

Cellular response to hexose stimulus BP 134 15 1.08E-03 0.682 

Positive regulation of cellular component biogenesis BP 533 41 1.12E-03 0.682 

Relevant pathways are highlighted. Abbreviations: Ont: Ontology; BP: biological process; CC: cellular component; MF: 
molecular function; N: number of genes included in each pathway; DE: number of Differentially Expressed genes, which are 
the number of genes from the top CpG sites; FDR: False Discovery Rate. 

 

revealed evidence of differences in epigenetic profiles 

involved in “longevity” such as “longevity regulating 

pathway” and “longevity regulating pathway – multiple 

species” (Tables 3 and 6). Although it was not 

statistically significant, the appearance of these 

pathways among top signals in the KEGG analysis 

demonstrates the potential role of the epigenetic 

processes manifesting the effect of metformin on 

longevity. The same KEGG analysis also showed 

“AMPK signaling pathway” (Table 3). AMP-activated 

protein kinase (AMPK), an energy sensor that regulates 
metabolism, is commonly referred to as one of the 

targets of metformin’s hypothetical mechanisms of 

action [18, 19], although there is also evidence that 

metformin’s effects are in part AMPK-independent 

[20]. Furthermore, AMPK activation is related to 

subsequent activation of hypoxia-inducible factors [21] 

which also appeared in our GO analyses as “regulation 

of hypoxia-inducible factor-1alpha signaling pathway” 

and “positive regulation of hypoxia-inducible factor-

1alpha signaling pathway” (Table 4), as well as 

“hypoxia-inducible factor-1alpha signaling pathway” 

(Table 7). Hypoxia-inducible factor-1alpha (HIF-1α) is 

a transcription factor expressed in nucleated cells and 

mediated by oxygen levels. HIF-1α has been implicated 
in age-related diseases, endothelial senescence 

progression, AMPK, and many other pathways [22]. 

Beyond metformin’s potential epigenetic medication 
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related to longevity, several pathways related to 

delirium, such as “circadian entrainment”, “cholinergic 

synapse”, and “glutamatergic synapse”, were identified 

(Tables 3 and 6). These pathways are intriguing from 

metformin’s possible “anti-aging” standpoint as age is a 

major risk factor of delirium. 

The beneficial effects of metformin on lifespan have 

been widely studied. Previous studies reported that 

metformin increased median lifespan of C. elegans co-

cultured with E.coli by more than 35% [9, 23], and 

prolonged the lifespan of mice [10]. Patients with age-

related diseases such as cardiovascular diseases and 

 

 
 

Figure 1. Age acceleration between metformin users and nonusers among the diabetes group. Age acceleration was calculated 
using the Horvath epigenetic clock as DNAm age - chronological age. Metformin = 0: without history of metformin use, Metformin = 1: with 
history of metformin use. p = 0.11. 

 

 
 

Figure 2. Age acceleration between metformin users and nonusers. Age acceleration was calculated using the Horvath epigenetic 

clock as DNAm age - chronological age. Metformin = 0: without history of metformin use, Metformin = 1: with history of metformin use. 
p = 0.34. 
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cancer who take metformin also had lower rates of 

mortality [24, 25]. Our recent study using a cohort of 

over 1,400 inpatients also revealed that diabetic patients 

with a history of metformin use have a significantly 

lower 3-year mortality than diabetic patients who have 

not taken metformin [12]. There are, however, 

conflicting reports as well. For example, the same effect 

was not observed in Drosophila [26]. Also, age-

dependent, dose-dependent, and gender-dependent 

variable effects on lifespan were reported in mice 

[27, 28]. Although these previous studies’ results are 

not consistent, our cohort mentioned above (from which 

the present data are an analysis of its subgroup) clearly 

showed a positive influence of metformin use on 

survival among diabetic inpatients [12]. 

 

Our epigenetics data presented herein support 

metformin’s broad range of potential effects as 

indicated by the pathways identified through the 

enrichment analysis. The KEGG analysis (Table 7) 

showed several signals related to inflammation and the 

immune system, such as “interleukin-8 receptor 

activity” and “negative regulation of leukocyte 

apoptotic process.” The appearance of inflammation-

related pathways is intriguing considering strong 

evidence showing that elderly people present with low-

grade, chronic inflammation [29]. These signals 

identified in our study may support our hypothesis that 

metformin can modify the inflammatory process 

through epigenetic modification and influence the 

likelihood of survival. Consistent with our data, Barath 

et al. also reported that metformin inhibited cytokine 

production from Th17 by correcting age-related changes 

in autophagy and mitochondrial bioenergetics, 

indicating its potential for the medication to promote 

healthy aging [30]. Among the literature supporting 

metformin’s role in suppressing inflammation, clinical 

trials including the Diabetes Prevention Program (DPP) 

[31] and Bypass Angioplasty Revascularization 

Investigation 2 Diabetes (BARI 2D) [32] have provided 

further evidence of metformin’s role in changing 

inflammatory biomarker levels among diabetic patients, 

while other clinical trials, such as the Lantus for C-

reactive Protein Reduction in Early Treatment of Type 2 

Diabetes (LANCET) [33], have found opposing 

evidence. Although several studies mentioned here have 

investigated the relationship between metformin and its 

potential anti-inflammation, a clinical trial aimed to 

confirm metformin’s role in aging is yet to be seen 

[2, 34]. It is worth mentioning, nonetheless, a small 

clinical study that demonstrated the regression of 

epigenetic age of patients through the administration of 

recombinant human growth hormone (rhGH), de-
hydroepiandrosterone (DHEA), and metformin [15]. As 

the study team administered three medications to their 

subjects at the same time, it is impossible to distinguish 

epigenetic changes caused only by metformin. It is also 

worth mentioning the unexpected results from the 

Horvath epigenetic clock since subjects with history of 

metformin use had relatively higher age acceleration 

than subjects without history of metformin. Still, neither 

reached statistical significance (p < 0.05). Future 

prospective studies comparing epigenetics marks before 

and after metformin use would be needed to better 

understand the direct effect of the medication. 

 

In DM-only subjects, A-kinase anchoring protein 13 

(AKAP13) gene was found (Table 5). A recent study 

showed that AKAP13 inhibits mammalian target of 

rapamycin complex 1 (mTORC1), which was present in 

our enrichment analysis as “mTOR signaling pathway” 

(Table 3). Furthermore, the degree of AKAP13 

expression in lung adenocarcinoma cell lines correlates 

with mTORC1 activity [35]. Metformin’s anti-

inflammatory effect has been shown to occur through 

eventual AMPK activation, which also inhibits the 

mTOR signaling pathway [18]. Metformin’s connection 

to AKAP13, which has yet been fully understood, 

deserves further investigation. 

 

To the best of our knowledge, our study is the largest of 

its kind. A smaller, previous study also investigated 

metformin’s effect on genome-wide DNA methylation 

in human peripheral blood, although their study power 

was limited to a sample size of 32 male subjects [36]. 

Enrichment analysis in the present study revealing the 

longevity pathway from a hypothesis-free approach 

further strengthens our hypothesis that metformin 

exhibits its potential benefit for longevity through 

epigenetic processes. We also identified other relevant 

pathways associated with metformin’s mechanisms of 

action, such as the AMPK signaling pathway and HIF-

1α signaling pathway [37]. 

 

Our study has several limitations. Although 171 subjects 

were analyzed retrospectively in this study, a controlled 

prospective study with a larger sample size would 

provide a better picture of the epigenetic mechanism of 

metformin on longevity. In addition, none of the 

individual CpG sites reached genome-wide significance 

(p < 5E-08). Thus, our findings should be interpreted as 

exploratory and hypothesis-generating. However, the 

fact that we found their biological relevance to 

metformin’s roles is still worth noting. As diabetes and 

metformin use status of the subjects was determined 

based on a retrospective chart review of electronic 

medical records, there are possibilities for mis-

classification, although we were still able to find 

multiple relevant pathways and genes of interest related 
to metformin’s action. Moreover, the duration of 

metformin use was not precisely assessed, making our 

definition of “metformin history use” broad since it 
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might have included patients who took metformin for 

only a few months and patients who took metformin for 

years, for instance. Also, other types of diabetic 

medications were not investigated, such as sulfonylureas 

and glinide drugs as we used an already completed study 

dataset from our previous work. The rationale for us not 

investigating the influence of other diabetic medications 

was based on past literature showing that those diabetic 

medications other than metformin did not show benefits 

for survival. In fact, sometimes they were associated 

with worse mortality [38–40]. 

 

In summary, the data presented here support our 

hypothesis that epigenetics, especially DNA 

methylation, may be altered by metformin use and that 

such epigenetic processes potentially contribute to 

molecular mechanisms leading to longevity. Further 

careful investigation with a larger sample size would be 

warranted. 

 

METHODS 
 

Study participants and recruitment 

 

We have previously recruited patients at the University 

of Iowa Hospital and Clinics (UIHC) for a separate 

study related to delirium from January 2016 to March 

2020 [41–44]. Among them, we used data from a 

subgroup of patients recruited from November 2017 to 

March 2020 who had blood samples collected and 

processed for the epigenetics analysis [45–47]. Patients 

18 years or older, who were admitted to the emergency 

department, orthopedics floor, general medicine floor, 

or intensive care unit were approached. Only those who 

consented, or whose legally authorized representative 

consented, were enlisted in the study. Written informed 

consent was obtained from all participants. Exclusion 

criteria included subjects whose goals of care were 

comfort measures only, those who were prisoners, or 

individuals with droplet/contact precautions. Further 

details of the study subjects and enrollment process are 

described previously [41–44]. 

 

We tested 173 subjects for genome-wide DNA 

methylation (DNAm) status, then conducted a post-hoc 

analysis of the available data to assess the influence of 

metformin. This study was approved by the University 

of Iowa Hospital and Clinics Institutional Review 

Board, and all procedures were compliant with the 

Declaration of Helsinki. 

 

Clinical information 
 

Clinical variables were gathered through electronic 

medical chart review, patient interviews, and collateral 

information from family members [41–44]. Metformin 

use, insulin use, and type 2 diabetes mellitus (DM) 

history were obtained by using the search terms 

“metformin”, “insulin”, and “DM” or “diabetes”, 

respectively [12]. Only type 2 diabetes mellitus (DM) 

was included, excluding type 1 diabetes mellitus or 

gestational diabetes. If there was a history of metformin 

prescription before the study enrollment, patients were 

categorized as metformin users (Met). Those who were 

prescribed metformin after participation were not 

categorized as metformin users (non-Met) since the 

blood was obtained prior to such prescription. 

 

Sample collection 

 

Blood samples were collected in EDTA tubes during 

patients’ hospital stay. Samples were shipped to the 

research laboratory and stored at −80°C until 

downstream analysis as a batch. 

 

Sample analysis 

 

DNA was extracted from whole blood following the 

MasterPure™ DNA Purification kit (Epicentre, MCD 

85201). DNA passing quality control based on NanoDrop 

spectrometry and in sufficient amount through the Qubit 

dsDNA Broad Range Assay Kit (ThermoFischer 

Scientific, Q32850) was selected for analysis for genome-

wide DNAm status. 500 ng of genomic DNA from each 

sample was bisulfite-converted with the EZ DNA 

Methylation™ Kit (Zymo Research, D5002) and analyzed 

using Infinium HumanMethylationEPICBeadChip™ Kit 

(Illumina, WG-317-1002). The Illumina iScan platform 

scanned the arrays. 

 

Statistics and bioinformatics analysis 

 

All analyses were conducted using R. The R packages 

ChAMP [48] and minfi [49] were used to process the 

data. Data from a total of 175 samples from 173 

subjects were included for the statistical and 

bioinformatic analysis. DNAm levels for each CpG site 

were first compared between those with and without 

a history of metformin prescription (first run; 

Supplementary Table 1). Then, comparison limited 

among only DM patients between those with and 

without a history of metformin prescription was 

conducted to avoid potential influence of DM on 

DNAm status (second run; Supplementary Table 2). 

 

During quality control processes, 2 samples from the first 

run and no samples from the second run were excluded 

based on the density analysis plots as a part of our quality 

control pipeline. 2 samples were also excluded because 
two patients had their blood collected twice. The first 

collected samples were included for further analysis 

while the second samples were excluded to maintain 
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consistency between samples from all subjects. 

Therefore, 171 subjects from the first run and 63 subjects 

from the second run remained for the analysis. 

Furthermore, during the data loading process, probes 

were filtered out if they (i) had a detection p-value >0.01, 

(ii) had <3 beads in at least 5% of samples per probe, (iii) 

were non-CpG, SNP-related, or multi-hit probes, or (iv) 

were located on chromosome X or Y. Beta mixture 

quantile dilation [50] was used to normalize samples, 

while the combat normalization method was used to 

correct for batch effect in the first run [51, 52]. The 

second run, which only included diabetic patients, was 

not corrected for batch effect because there were 

individual patients who were not part of any batches. 

 

Top hits based on each CpG site difference were 

obtained through the RnBeads package using the limma 

method [53, 54] and accounting for age, sex, insulin 

use, BMI and cell type proportions (CD8 T cells, CD4 T 

cells, natural killer cells, B cells, and monocytes) as 

covariates. DNAm Age Calculator available online [55] 

calculated the cell type proportions through the method 

reported previously [56]. 

 

After obtaining the top CpG sites, enrichment analysis 

followed using missMethyl [57] and unbalanced 

numbers of CpG sites on each gene were controlled 

using the EPIC array. Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genome (KEGG) [58] 

analysis was conducted. The number of CpG sites 

included in the analysis was determined by the 

combination of p-value and beta value cutoffs of the 

methylation rates of each CpG site (p < .01 and beta 

>0.04). Genome-wide significance was set at a p-value 

of less than = 5.0E-08. 

 

The chi-square test compared the categorical data (sex, 

race, and insulin use) between two groups, while the 

Welch’s t-test compared the numerical data (age, BMI, 

and CCI) between two groups. 

 

DNA methylation aging clock analysis 

 

To investigate whether subjects with history of 

metformin use had slower “age acceleration” than 

subjects without history of metformin use, we submitted 

the raw DNA methylation beta values to a publicly 

available tool, which includes the Horvath [55] method. 

The calculated output was the difference between the 

DNA methylation age and the chronological age. 

 

Availability of data materials 

 
The datasets analyzed during the current study are 

available from the corresponding author upon 

reasonable request. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1 and 2. 

 

Supplementary Table 1. Differential methylation table between metformin users and nonusers regardless of 
diabetes status. 

 

Supplementary Table 2. Differential methylation table for between metformin users and nonusers among 
diabetes group. 

 

 


