Abstract

Ovarian cancer represents a formidable gynecologic malignancy bearing a dismal prognosis owing to the dearth of reliable early detection approaches and a high recurrence rate. Long non-coding RNAs (lncRNAs) have garnered immense attention as key orchestrators involved in diverse biological processes and take part in cancer initiation and progression. The present study investigated the potential significance of lncRNA USP30-AS1 in ovarian cancer prognosis, as well as its putative association with immune cell infiltration in tumor immune microenvironment (TIME). By analyzing publicly available datasets, we identified six lncRNAs with prognostic prediction ability, including USP30-AS1. The results revealed a significant positive correlation of USP30-AS1 expression with the infiltration of immune cells such as Th1 cells, TFH, CD8 T cells, B cells, antigen-presenting dendritic cells (aDC), and plasmacytoid dendritic cells (pDC) in ovarian cancer specimens. These findings provide compelling evidence of the potential involvement of lncRNA in the regulation of the TME in ovarian carcinoma. The outcomes from this study underscore the potential of USP30-AS1 as a promising prognostic biomarker for ovarian cancer. Additionally, the findings offer significant insights into the plausible role of lncRNAs in modulating immune activities, thus adding to our understanding of the disease biology. Additional investigations are necessary to unravel the molecular mechanisms underpinning these connections and validate the results seen in independent cohorts and experimental models.