Breast cancer (BC) is among the top three most prevalent cancers across the world, especially in women, and its pathogenesis is still unknown. Fatty acid β-oxidation is highly associated with breast cancer. Serpin family E member 1 (SERPINE1)-induced down-regulation of fatty acid β-oxidation can facilitate BC cell proliferation, invasion, and metastasis. In this paper, the difference of miR-30d-5p expressions in both cancerous tissues and para-carcinoma tissues was first detected. Next, the expressions of SERPINE1, long-chain acyl-CoA dehydrogenase (LCAD) and medium-chain acyl-CoA dehydrogenase (MCAD) in the aforementioned tissues were analyzed. Finally, miR-30d-5p mimics were supplemented to breast cancer cells to observe the miR-30d-5p effect upon breast cancer cells. Via immunofluorescence assay and Western blotting, it was found that cancerous tissues had lower expressions of miR-30d-5p, MCAD and LCAD and a higher expression of SERPINE1 than para-carcinoma tissues. The miR-30d-5p mimic group had a decreased SERPINE1 expression and increased MCAD and LCAD expressions compared with the NC group, thus inhibiting BC cell proliferation, invasion, and metastasis. To sum up, miR-30d-5p blocks the cell proliferation, invasion and metastasis by targeting SERPINE1 and promoting fatty acid β-oxidation. Preclinical studies are further required to establish a fatty acid β-oxidation-targeting therapy for breast cancer.