T cells are the key to killing tumor cells. However, the exact mechanism of their role in cancer is not fully understood. Therefore, a comprehensive understanding of the role of T-cell proliferation regulatory genes in tumors is needed. In our study, we investigated the expression levels of genes controlling T-cell proliferation, their impact on prognosis, and their genetic variations. Additionally, we explored their associations with TMB, MSI, ESTIMATEScore, ImmuneScore, StromalScore, and immune cell infiltration. We examined the role of these genes in cancer-related pathways using GSEA. Furthermore, we calculated their activity levels across various types of cancer. Drug analysis was also conducted targeting these genes. Single-cell analysis, LASSO Cox model construction, and prognosis analysis were performed. We observed distinct expression patterns of T-cell proliferation regulatory genes across different malignant tumors. Their abnormal expression may be caused by CNA and DNA methylation. In certain cancers, they also showed complex associations with TMB and MSI. Moreover, in many tumors, they exhibited significant positive correlations with ESTIMATEScores, ImmuneScore, and StromalScore. Additionally, in most tumors, their GSVA scores were significantly positively correlated with various T-cell subtypes. GSEA analysis revealed their involvement in multiple immune pathways. Furthermore, we found that model scores were associated with patient prognosis and related to tumor malignancy progression. T-cell proliferation regulatory genes are closely associated with the tumor immune microenvironment (TIM), especially T cells. Targeting them may be an essential approach for cancer immunotherapy.