Abstract

RecQ helicases are known as “caretakers” of the genome for their conserved helicase activities to resolve different complex DNA structures. Aberrant accumulation of unsolved DNA structures could lead to defects in DNA replication, gene transcription, and unrepaired DNA lesions. Pathogenic mutations on BLM, WRN, and RECQL4 are associated with several pathological conditions, namely Bloom syndrome (BS), Werner syndrome (WS), and Rothmund-Thomson syndrome (RTS). These syndromes are characterized by genomic instability and cancer predisposition. Additionally, some RecQ helicase diseases are linked to developmental defects and premature aging. In this review, we provide an overview of the RecQ helicases, focusing on the molecular functions and mechanisms, as well as the consequences of their dysfunction in cellular processes. We also discuss the significance of RecQ helicases in preventing various genetic disorders (BS, WS, RTS) and the insights obtained from the different animal models developed for studying the pathophysiology of RecQ helicase deficiencies.