Parsing Chronological and Biological Age Effects on Vaccine Responses


“Ultimately, while both chronological and biological age appear to be important determinants of vaccine-preventable outcomes in older adults, the underlying context and mechanisms of their effects remain unclear.”

Listen to an audio version of this press release

BUFFALO, NY- March 27, 2023 – A new editorial paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 5, entitled, “Parsing chronological and biological age effects on vaccine responses.”

Researchers Chris P. Verschoor and George A. Kuchel from Health Sciences North Research Institute in Ontario, Canada, began this editorial by writing that the COVID-19 pandemic illustrated that older age, particularly when accompanied by common chronic illnesses of aging, is arguably the most significant population attributable factor for severe outcomes of acute respiratory infection, including the risk of hospitalization, disability and death.

“In the absence of widely available and highly effective treatments, vaccines remain our most powerful tool to help overcome this vulnerability through the prevention of primary infection, and far more importantly, by improving clinical outcomes once infection does take place.”

In the case of SARS-CoV-2, vaccine effectiveness (VE) against hospitalization was remarkable for dominant strains prior to omicron, whereas for influenza or Streptococcus pneumoniae VE ranges from 80% to <10%, depending on the season and infecting strain/serotype. Nonetheless, for all three pathogens VE decreases with age, which is caused by deficiencies in the capacity of older adults’ immune systems to mount productive and persistent antibody and/or cell-mediated responses to the vaccine. Given that extremely large, costly and typically lengthy clinical trials are often required to estimate VE reliably, the vast majority of human vaccine studies assess immune correlates of protection as a proxy to VE. For these studies, antibody-related parameters such as neutralization capacity are most commonly employed since they are generally simpler from a technical standpoint and many have been rigorously standardized.

“Although informative, cross-sectional studies comparing immune parameters across age groups to understand ‘immune aging’ risk ignore the degree to which departures from healthy aging might contribute.”

Continue Reading the Full Editorial: DOI: 

Corresponding Author: Chris P. Verschoor

Corresponding Email: 

Keywords: biological age, frailty, vaccination, influenza

Sign up for free Altmetric alerts about this article:

About Aging-US:

Launched in 2009, Aging (Aging-US) publishes papers of general interest and biological significance in all fields of aging research and age-related diseases, including cancer—and now, with a special focus on COVID-19 vulnerability as an age-dependent syndrome. Topics in Aging go beyond traditional gerontology, including, but not limited to, cellular and molecular biology, human age-related diseases, pathology in model organisms, signal transduction pathways (e.g., p53, sirtuins, and PI-3K/AKT/mTOR, among others), and approaches to modulating these signaling pathways.

Please visit our website at and connect with us:

For media inquiries, please contact