Competing endogenous RNA networks have attracted increasing attention in gastric adenocarcinoma (GA). The current study aimed to explore ceRNA-based prognostic biomarkers for GA. RNA expression profiles were downloaded from TCGA and GEO databases. A ceRNA network was constructed based on the most relevant modules in the weighted gene coexpression network analysis. Kaplan-Meier (KM) survival analysis revealed prognosis-related RNAs, which were subjected to the multivariate Cox regression analysis. The predictive accuracy and discriminative ability of the signature were determined by KM analyses, receiver operating characteristic curves and area under the curve values. Ultimately, we constructed a ceRNA network consisting of 55 lncRNAs, 17 miRNAs and 73 mRNAs. Survival analyses revealed 3 lncRNAs (LINC01106, FOXD2-AS1, and AC103702.2) and 3 mRNAs (CCDC34, ORC6, and SOX4) as crucial prognostic factors; these factors were then used to construct a survival specific ceRNA network. Patients with high risk scores exhibited significantly worse overall survival than patients with low risk scores, and the AUC for 5-year survival was 0.801. A total of 112 GA specimens and the GSE84437 dataset were used to successfully validate the robustness of our signature by qRT-PCR. In summary, we developed a prognostic signature for GA, that shows better accuracy than the traditional TNM pathological staging system.