Previous studies have shown that aging promotes myocardial apoptosis. However, the detailed mechanisms remain unclear. Our recent studies revealed that aging not only activates apoptosis, but also activates some anti-apoptotic factors. By quantitative phosphoproteomics, here we demonstrated that aging increases cytochrome c (Cytc) phosphorylation at threonine 50 (T50), a post-translational modification with unknown functional impact. With point mutation and lentivirus transfection, cardiomyocytes were divided into four groups: empty vector group, WT (wild type), T50E (as a phosphomimic variant), and T50A (non-phosphorylatable). TUNEL staining and flow cytometry were used to determine the apoptosis ratio in different groups after hypoxic/reoxygenated (H/R) treatment. The results showed that T50-phosphorylated Cytc suppressed myocardial apoptosis induced by H/R. Furthermore, Western Blot and ELISA measurements revealed that Cytc T50 phosphorylation inhibited caspase-9 and caspase-3 activity without altering caspase-8, BCL-2, BCL-XL, and Bax expression. In our study, we demonstrated that aging increases phosphorylation Cytc at T50 and this aging-increasing phosphorylation site can suppress H/R-induced apoptosis.