Effects of Zoledronic Acid on Senescence and SASP Markers

05-15-2023

“In the present study, we used multiple complementary approaches to evaluate the possible effects of zoledronic acid on cellular senescence.”

Listen to an audio version of this press release

BUFFALO, NY- May 15, 2023 – A new research paper was published on the cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 9, entitled, “In vitro and in vivo effects of zoledronic acid on senescence and senescence-associated secretory phenotype markers.”

Zoledronic acid has been found to reduce fracture risk and, in some studies, to decrease mortality in humans and extend lifespan and healthspan in animals. Because senescent cells accumulate with aging and contribute to multiple comorbidities, the non-skeletal actions of zoledronic acid could be due to senolytic (killing of senescent cells) or senomorphic (inhibition of the secretion of the senescence-associated secretory phenotype (SASP)) actions.

In this new study, researchers Parinya Samakkarnthai, Dominik Saul, Lei Zhang, Zaira Aversa, Madison L. Doolittle, Jad G. Sfeir, Japneet Kaur, Elizabeth J. Atkinson, James R. Edwards, Graham G. Russell, Robert J. Pignolo, James L. Kirkland, Tamar Tchkonia, Laura J. Niedernhofer, David G. Monroe, Nathan K. Lebrasseur, Joshua N. Farr, Paul D. Robbins, and Sundeep Khosla from the Mayo Clinic, Phramongkutklao Hospital and College of Medicine, Eberhard Karls University, University of Minnesota, University of Oxford, and University of Sheffield tested the above hypothesis using multiple complementary approaches (in vitro, in vivo, and in silico) to evaluate possible effects of zoledronic acid on modulating cellular senescence.

The researchers first performed in vitro senescence assays using human lung fibroblasts and DNA repair-deficient mouse embryonic fibroblasts, which demonstrated that zoledronic acid killed senescent cells with minimal effects on non-senescent cells. Next, in aged mice treated with zoledronic acid or vehicle for 8 weeks, zoledronic acid significantly reduced circulating SASP factors, including CCL7, IL-1β, TNFRSF1A, and TGFβ1 and improved grip strength. Analysis of publicly available RNAseq data from CD115+ (CSF1R/c-fms+) pre-osteoclastic cells isolated from mice treated with zoledronic acid demonstrated a significant downregulation of senescence/SASP genes (SenMayo). 

To establish that these cells are potential senolytic/senomorphic targets of zoledronic acid, the team used single cell proteomic analysis (cytometry by time of flight [CyTOF]) and demonstrated that zoledronic acid significantly reduced the number of pre-osteoclastic (CD115+/CD3e-/Ly6G-/CD45R-) cells and decreased protein levels of p16, p21, and SASP markers in these cells without affecting other immune cell populations. 

“Collectively, our findings demonstrate that zoledronic acid has senolytic effects in vitro and modulates senescence/SASP biomarkers in vivo. These data point to the need for additional studies testing zoledronic acid and/or other bisphosphonate derivatives for senotherapeutic efficacy.”

Read the full study: DOI: https://doi.org/10.18632/aging.204701 

Corresponding Author: Sundeep Khosla - khosla.sundeep@mayo.edu 

Keywords: senescence, senolytics, aging, bone, bisphosphonates

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204701

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.