Senescence and Extracellular Vesicles: Novel Partners in Vascular Amyloidosis

03-29-2023

“[...] there has been limited research to date on the effect of cellular ‘ageing’, termed senescence, on amyloidosis.”

Listen to an audio version of this press release

BUFFALO, NY- March 29, 2023 – A new editorial paper was published in Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 5, entitled, “Senescence and extracellular vesicles: novel partners in vascular amyloidosis.”

In their editorial, researchers Meredith Whitehead, Marco Antonazzi and Catherine M. Shanahan from King’s College London discussed amyloidosis—a prevalent age-associated pathology caused by the accumulation of fibrous, insoluble protein fibrils in tissues. The most common human amyloid is aortic medial amyloid (AMA), caused by aggregation of a 50-amino acid peptide called medin, which is cleaved by an unknown mechanism from its parent protein, milk fat globulin EGF-factor 8 (MFGE8). Medin is present in the vessel wall of 97% of Caucasians aged over 50- years, yet despite its prevalence in the ageing population there is a very limited understanding of the mechanisms driving AMA.

“Despite several forms of amyloidosis, including AMA and Alzheimer’s disease (AD), being frequently associated with ageing, there has been limited research to date on the effect of cellular ‘ageing’, termed senescence, on amyloidosis.”

The novel data presented in the paper by Whitehead et al. provides evidence that vascular smooth muscle cell (VSMC)-derived small extracellular vesicles (sEVs) are key mediators of medin accumulation in the vessel wall. In addition, the authors identify, for the first time, a role for cellular senescence in triggering amyloidosis via changes in sEVs and extracellular matrix (ECM) composition. Thus, this study not only advances our understanding of how AMA is formed but uncovers potential therapeutic targets for mitigating the detrimental effects of amyloidosis on tissue function.

“Further work is now required to understand the relationships between cellular ageing pathways, different forms of amyloidosis and potentially other ageing pathologies with shared mechanisms, such as vascular calcification, that often occur concomitantly within the aged ECM.”

Continue Reading the Full Editorial: DOI: https://doi.org/10.18632/aging.204571 

Corresponding Author: Catherine M. Shanahan

Corresponding Email: cathy.shanahan@kcl.ac.uk 

Keywords: amyloid, smooth muscle cells, senescence, extracellular vesicles, medin

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204571

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.