Abstract

Diabetes mellitus (DM) significantly influences the normal health of patients with its severe complications, including diabetes-related cognitive impairment (CI). Recently, neuroinflammation and oxidative stress (OS) have been reported to participate in the pathogenesis of diabetes-related CI. Teneligliptin, an inhibitor of DDP-IV, was developed for treating DM and is claimed with promising effects against inflammation. Herein, in the current study, we examined the potential therapeutic function of Teneligliptin against diabetes-related CI. Db/m or diabetic mice were orally administered with teneligliptin (60 mg/kg/day) for 10 weeks. Elevated levels of total cholesterol (TC), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-C), increased escape latency, declined time in the platform quadrant and decreased number of platform crossings in the Morris water maze test, reduced freezing index in the fear conditioning test, and lessened time spent in the novel arm and percentage of alterations in the Y-maze test were observed in diabetic mice, all of which were sharply improved by teneligliptin. Furthermore, increased levels of inflammatory cytokines and activated OS state were observed in the hippocampus of diabetic mice, which were markedly repressed by Teneligliptin. Lastly, the activation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling and the endoplasmic reticulum (ER) stress pathway in the hippocampus of diabetic mice were notably inhibited by teneligliptin. Collectively, teneligliptin mitigated diabetes-related CI by repressing the ER stress and NLRP3 inflammasome in diabetic mice.