A Chronic Wound Model to Investigate Skin Cellular Senescence

05-01-2023

“Here, we report a chronic wound healing model that can be used to decipher the paradoxical role of cellular senescence in acute versus chronic wound healing.”

Listen to an audio version of this press release

BUFFALO, NY- May 1, 2023 – A new research paper was published on the cover of Aging (listed by MEDLINE/PubMed as "Aging (Albany NY)" and "Aging-US" by Web of Science) Volume 15, Issue 8, entitled, “A chronic wound model to investigate skin cellular senescence.”

Wound healing is an essential physiological process for restoring normal skin structure and function post-injury. The role of cellular senescence, an essentially irreversible cell cycle state in response to damaging stimuli, has emerged as a critical mechanism in wound remodeling. Transiently-induced senescence during tissue remodeling has been shown to be beneficial in the acute wound healing phase. In contrast, persistent senescence, as observed in chronic wounds, contributes to delayed closure. 

In this new study, researchers Saranya P. Wyles, Parisa Dashti, Tamar Pirtskhalava, Burak Tekin, Christina Inman, Lilian Sales Gomez, Anthony B. Lagnado, Larissa Prata, Diana Jurk, João F. Passos, Tamar Tchkonia, and James L. Kirkland from Mayo Clinic in Rochester, Minnesota, describe a chronic wound murine model and its cellular senescence profile, including the senescence-associated secretory phenotype.

“Herein we hypothesize that persistent senescent cell accumulation contributes to delayed healing in chronic wounds.” 

This study presents a novel oxidative stress-induced chronic murine wound mouse model in which there is capacity to target aberrant senescent cell expression. Pharmacological manipulation of oxidative stress can influence wound healing and result in delayed wound closure, which offers the opportunity to characterize cellular senescence in late stages of wound healing. The molecular and histological profiles of senescent cells in the epidermis and dermis demonstrate the adverse influence of SASP factors in the chronic wound bed, a new avenue for root-cause, targeted therapeutic interventions.

“To our knowledge, this study is the first chronic wound murine model to profile the effects of the chronic cellular senescence that is linked to delayed wound healing. This may have implications for developing interventions that target cellular senescence for chronic or stalled wounds as a root cause-driven therapeutic strategy.”

Read the full study: DOI: https://doi.org/10.18632/aging.204667 

Corresponding Authors: James L. Kirkland, Tamar Tchkonia - kirkland.james@mayo.edu, tchkonia.tamar@mayo.edu 

Keywords: wound healing, cellular senescence, chronic wound re-epithelization, skin

Sign up for free Altmetric alerts about this article: https://aging.altmetric.com/details/email_updates?id=10.18632%2Faging.204667

About Aging-US:

Aging publishes research papers in all fields of aging research including but not limited, aging from yeast to mammals, cellular senescence, age-related diseases such as cancer and Alzheimer’s diseases and their prevention and treatment, anti-aging strategies and drug development and especially the role of signal transduction pathways such as mTOR in aging and potential approaches to modulate these signaling pathways to extend lifespan. The journal aims to promote treatment of age-related diseases by slowing down aging, validation of anti-aging drugs by treating age-related diseases, prevention of cancer by inhibiting aging. Cancer and COVID-19 are age-related diseases.

Aging is indexed by PubMed/Medline (abbreviated as “Aging (Albany NY)”), PubMed CentralWeb of Science: Science Citation Index Expanded (abbreviated as “Aging‐US” and listed in the Cell Biology and Geriatrics & Gerontology categories), Scopus (abbreviated as “Aging” and listed in the Cell Biology and Aging categories), Biological Abstracts, BIOSIS Previews, EMBASE, META (Chan Zuckerberg Initiative) (2018-2022), and Dimensions (Digital Science).

Please visit our website at www.Aging-US.com and connect with us:

For media inquiries, please contact media@impactjournals.com.